橡胶技术网

弹性体
CHINA ELASTOMERICS
2005 Vol.15 No.1 P.50-58

橡胶技术网

橡胶材料的超弹性本构模型

A review of elastic constitutive model for rubber materials

李晓芳  杨晓翔 

摘 要:首先对橡胶材料的超弹性理论进行了简单的总结,然后从分子统计热力学和连续介质力学两方面综述了国内外一些经典的有代表性的橡胶材料不可压缩本构模型,同时还介绍了这些本构模型的适用范围和应用局限性,阐述了橡胶材料可压缩性对本构模型的影响.
关键词:橡胶材料;本构模型;超弹性;应变能
分类号:TQ330.1  文献标识码:A

文章编号:1005-3174(2005)01-0050-09

基金项目:国家自然科学基金项目(50375028)
作者简介:李晓芳(1977-),女,湖北天门人,博士研究生,主要从事橡胶类材料力学分析方面的工作,E-mail:featnofail@fzu.edu.cn.
作者单位:李晓芳(福州大学,化学化工学院,福建,福州,350002) 
     杨晓翔(福州大学,化学化工学院,福建,福州,350002) 

参考文献:

[1]Fazilay Laraba-Abbes,et al. A new `tailor-made'methodology for the mechanical behavior analysis of rubber-like materials: Ⅱ. Application to the hyperelastic behaviour characterization of a carbon-black filled natural rubber vulcanizate[J]. Polymer, 2003, 44(3): 821~840.
[2]Edvige Pucci, et al. A note on the gent model for rubber-like materials[J]. Rubber Chemistry and Technology, 2002, 5(5): 839~851.
[3]Marckmann G,Verron E et al. A theory of network alteration for the Mullins effect[J]. Journal of the mechanics and physics of solids, 2002, 50: 2011~2028.
[4]Boyce M C and Arruda E M. Constitutive models of rubber elasticity: a review[J]. Rubber chemistry and technology, 2000, 73(3):504~52.
[5]Treloar L R G. The elasticity of a network of long chain molecules[J]. Rubber Chemistry And Technology, 1943, 16(4): 746~751.
[6]Treloar L R G. The elasticity of a network of long chain molecules[J]. Rubber Chemistry And Technology, 1943, 17(2): 296~302.
[7]Treloar L R G. Physics of Rubber Elasticity[M].Oxford:University Press,1975.
[8]Treloar L R G. The mechanics of rubber elasticity[M]. Proc R Soc Lond Ser A, 1976, 351: 301-330.
[9]Treloar L R G, Riding G. A non-gaussian theory for rubber in biaxial strain.I. Mechanical properties[J].Proc R Soc Lond Ser A, 1979, 369: 261~280.
[10]Wu P D, van der Giessen E. On improved 3-D non-gaussian network models for rubber elasticity.Mech Res Commun, 1992, 19 (5):427~433.
[11]Wu P D, van der Giessen E. On improved 3-D non-gaussian network models for rubber elasticity and their applications to orientation hardening in glassy polymers[J]. Journal of the mechanics and physics of solids, 1993, 41 (3): 427~456.
[12]James H M, Guth E. Theory of the elastic properties of rubber[J]. J Chem Phys, 1943, 11 (10): 455~481.
[13]Flory P J. Network structure and the elastic properties of vulcanized rubber[J]. Chem Rev, 1944, 35:51~75.
[14]Arruda E, Boyce M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the mechanics and physics of solids, 1993, 41 (2), 389~412.
[15]James A G, Green A. Strain energy functions of rubber. Ⅱ. Characterization of 8lled vulcanizates[J]. J Appl Polym Sci, 1975, 19:2319~2330.
[16]James A G, Green A et al. Strain energy functions of rubber. I. characterization of gum vulcanizates[J]. J Appl Polym Sci, 1975, 19: 2033~2058.
[17]Rivlin R S. Large elastic deformation of isotropic materials: I. Fundamental concepts, II. Some uniqueness theories for pure homogeneous deformations[J]. Philos Trans Roy Soc Lond Ser A, 1948, 240: 459~508.
[18]Mooney R. A theory of large elastic deformation[J]. J Appl Phys, 1940, 11: 582~592.
[19]Tschoegl N W. Constitutive equations for elastomers[J]. J Appl Polymer Sci, 1971, A1: 1959~1970.
[20]James A G, Green A. Strain energy function of rubber.Ⅱ. The characterization of filled vulcanizates[J]. J Appl Polymer Sci, 1975, 19: 2319~23303.
[21]Morman Jr K N, Pan T Y. Application of finite-element analysis in the design of automotive elastomeric components[J]. Rubber chemistry and technology, 1988, 61(3): 503~533.
[22]Haines D W, Wilson W D. Strain energy density function for rubberlike materials[J]. Journal of the mechanics and physics of solids, 1979, 27: 345~360.
[23]Gregory M J. The stress-strain behavior of filled rubbers at moderate strains[J]. Plastics and Rubbers Materials and Applications, 1979, 4(4):184~188.
[24]Yamashita Y, kawabata S. Approximated form of the strain energy density function of carbon black filled rubber for industrial applications[J]. Polymer science technology, 1993, 20(2): T/52~T/64.
[25]Kawabata S, Kawai H. Strain energy density function of rubber vulcanizate from biaxial extension[J]. Adv Polymer Sci, 1977, 24: 90~124.
[26]Hocine Bechiar et al. Strain energy density function for carbon black filled rubber vulcanized for industrial applications[J]. Mecanique&Industries, 2002, 3: 245~252.
[27]Yeoh O H. Characterization of elastic properties of carbon black-filled rubber vulcanizates[J]. Rubber Chemistry and Technology, 1990, 63(5):792~805.
[28]Mullins L. Softening of rubber by deformation[J]. Rubber Chemistry And Technology, 1969, 42(1):339~362.
[29]Yeoh O H. Some forms of the strain energy for rubber[J]. Rubber Chemistry and technology, 1993, 66(5):754~771.
[30]Gent A N. A new constitutive relation for rubber[J]. Rubber Chemistry And Technology, 1996, 69(1):59~61.
[31]Kilian H G. Equation of state of real networks[J]. Polymer, 1981, 22: 483~492.
[32]Edwards S F, Vilgis Th. The effect of entanglements in rubber elasticity[J]. Polymer, 1986, 27:483~492.
[33]Horgan C O, Saccomandi G. Constitutive modeling of rubber-like and biological materials with limiting chain extensibility[J]. Journal of the Mechanics and Physics of Solids, 2002, 7: 353~371.
[34]Horgan C O, Saccomandi G. Finite thermoelasticity with limiting chain extensibility[J]. Journal of the mechanics and physics of solids, 2003, 51:1127~1146.
[35]Boyce M C. Direct comparison of the Gent and the Arruda-Boyce constitutive models of rubber elasticity[J]. Rubber chemistry and technology, 1996, 69(5):781~785.
[36]Valanis K C, Landel R F. The strain-energy function of a hyperelastic material in terms of the extension ratios[J]. J Appl Phys, 1967, 38 (7): 2997~3002.
[37]Charlton D J, Yang J. A review of methods to characterize rubber elastic behavior for use in finite element analysis[J]. Rubber Chemistry And Technology, 1994, 67(3): 481~503.
[38]Ogden R W. Large deformation isotropic elasticity-on the correlation of theory and experiment forincompressible rubberlike solids[J]. Proc R Soc Lond Ser A, 1972, 326: 565~584.
[39]Ogden R W. Nearly isotropic elastic deformations : application to rubberlike solids. Journal of the Mechanics and Physics of Solids, 1978, 26(1): 37-57.
[40]Ogden R W, Roxburgh D G. A pseudo-elastic model for the Mullins effect in filled rubber[J]. Proc R Soc Lond Ser A,1999, 455: 2861~2877.
[41]Rivlin R S. The elasticity of rubber[J]. Rubber Chemistry And Technology, 1992, 65(3): 51~67.
[42]Yeoh O H. On the ogden strain energy function[J]. Rubber Chemistry And Technology, 1997, 70(2): 175~182.
[43]Bischoff J E, Arruda E M et al. A new constitutive model for the compressibility of elastomers at finite deformations[J]. Rubber Chemistry And Technology, 2001, 74(3): 541~559.
[44]Penn R W. Volume changes accompanying the extension of rubber[J]. Transactions of the society of rheology, 1970, 14(4): 509~517.

收稿日期:2004年9月6日

出版日期:2005年2月1日

请看PDF全文